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ABSTRACT: High-resolution oceanic precipitation estimates are needed to increase our understanding of and ability to
monitor ocean–atmosphere coupled processes. Satellite multisensor precipitation products such as IMERG provide global
precipitation estimates at relatively high resolution (0.18, 30 min), but the resolution at which IMERG precipitation esti-
mates are considered reliable is coarser than the nominal resolution of the product itself. In this study, we examine the abil-
ity of the Rainfall Autoregressive Model (RainFARM) statistical downscaling technique to produce ensembles of
precipitation fields at relatively high spatial and temporal resolution when applied to spatially and temporally coarsened
precipitation fields from IMERG. The downscaled precipitation ensembles are evaluated against in situ oceanic rain-rate
observations collected by passive aquatic listeners (PALs) in 11 different ocean domains. We also evaluate IMERG coars-
ened to the same resolution as the downscaled fields to determine whether the process of coarsening then downscaling im-
proves precipitation estimates more than averaging IMERG to coarser resolution only. Evaluations were performed on
individual months, seasons, by ENSO phase, and based on precipitation characteristics. Results were inconsistent, with
downscaling improving precipitation estimates in some domains and time periods and producing worse performance in
others. While the results imply that the performance of the downscaled precipitation estimates is related to precipitation
characteristics, it is still unclear what characteristics or combinations thereof lead to the most improvement or consistent
improvement when applying RainFARM to IMERG.
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1. Introduction

Over 75% of global rain falls over Earth’s oceans (Trenberth
et al. 2007), and this precipitation plays an important role in the
surface freshwater buoyancy flux and sea surface salinity
(Ramesh Kumar and Shulz 2002; Prakash et al. 2012, 2018),
which couples the ocean to the atmosphere, and contributes
to heat processes in driving ocean circulations (Kucera and
Klepp 2022). Therefore, reliable estimates of oceanic pre-
cipitation at high spatial and temporal resolution are neces-
sary to better understand the global water cycle and climate
system (Prakash et al. 2018).

Although improvements in observation quality and record-
length have resulted in changes to oceanic precipitation estimates
over the years (Trenberth et al. 2007), in situ measurements
of oceanic precipitation remain sparse, being generally lim-
ited to gauges on a relatively small number of buoy arrays or
research vessels, many of which are confined to relatively high-
precipitation tropical regions (Maggioni et al. 2016; Sapiano
and Arkin 2009; Wu and Wang 2019; Prakash et al. 2018). The
quality of gauge precipitation estimates is impacted by under-
catch due to high winds, platform motion, turbulence around

the ship structure, intermittent data outages, and even buoy
vandalism (Wu and Wang 2019; Yang et al. 2015; Maggioni
et al. 2016; Kucera and Klepp 2022). Observations from the
Ocean Rainfall and Ice-phase precipitation measurement
Network (OceanRAIN) aimed to overcome the shortcomings
of ship-based gauges and tropics-focused instrument place-
ment by deploying optical disdrometers to measure precipita-
tion on eight ships that traversed the global oceans from June
2010 through December 2018 (Klepp 2015; Klepp et al. 2018;
Kucera and Klepp 2022). The OceanRAIN dataset provides
more geographic coverage than stationary buoy arrays but still
represents a limited number of data points. Recently, 12 years
of observations from passive aquatic listeners (PALs)}
hydrophones capable of detecting the unique frequency of rain-
drops falling with different intensities on the ocean surface}
were reprocessed and made available for use (Bytheway et al.
2023; Yang et al. 2015). PALs have been deployed on moorings
and drifting Argo buoys over the global oceans. While their data
have not been widely used outside of field campaigns, these
newly available oceanic PAL rain datasets create an opportunity
to validate satellite rain retrievals over oceans (Li et al. 2023)
and test postprocessing methods, such as downscaling, to im-
prove satellite estimates.

While in situ measurements are sparse over the oceans, sat-
ellite multisensor precipitation products such as Integrated
Multi-satellitE Retrievals for GPM (IMERG) provide global
or quasi-global precipitation estimates at relatively high spa-
tial and temporal resolution. Many studies have evaluated
these products over ocean using regional in situ datasets,
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surface-based radars located on islands or near coasts, or
lower resolution climate precipitation products (e.g., Sapiano
and Arkin 2009; Maggioni et al. 2016; Wu and Wang 2019;
Prakash et al. 2018; Kucera and Klepp 2022; Bytheway et al.
2023). These evaluations have found that satellite multisensor
precipitation estimates underestimate or miss light and warm
rain (Maggioni et al. 2016; Wu and Wang 2019), with the
largest rainfall rate errors found in the latitude band between
08 and 158 (Kucera and Klepp 2022).

Although nominally available at resolutions on the order of
several kilometers and hourly to subhourly, satellite multisen-
sor precipitation estimates are typically most reliable when
averaged to coarser spatial and temporal resolution (Tan et al.
2017; Bytheway et al. 2023). However, over ocean, even rela-
tively light (;5 mm h21) precipitation events can stabilize the
near-surface ocean under weak winds, even amid surface
cooling (Thompson et al. 2019; Iyer and Drushka 2021a,b, so-
called ocean fresh layers, freshwater lenses, or rain layers).
Under these stabilizing conditions, rain can dramatically change
sea surface salinity (Drushka et al. 2016, 2019; Reverdin et al.
2020). Regardless of ocean stability, rain also creates substantial
sensible heat fluxes to the atmosphere (up to 200 W m22

for about 100 mm h21 instantaneous 1-min rain rates, or
40 mm h21 10-min average rain rates, depending on air tem-
perature and humidity conditions; Gosnell et al. 1995). It is
significant that fine-scale, short-lived, and even light rain
rates can impact the ocean so dramatically, especially since
smaller short-lived rain events are the most common occur-
rences of rain over oceans (e.g., Trivej and Stevens 2010).
Rain events that are impactful on the ocean often occur on
scales smaller than the nominal resolution of many satellite-
based precipitation products, which in turn are offered at
finer resolution than that at which they most accurately rep-
resent the precipitating field (e.g., daily, Tan et al. 2017; Wu
and Wang 2019). As such, in order to use satellite multisen-
sor precipitation estimates for oceanic applications, the sub-
grid-scale variability will need to be simulated (Kucera and
Klepp 2022).

One way to obtain higher resolution estimates of oceanic
precipitation from satellite observations is through downscal-
ing techniques, which derive high-resolution precipitation es-
timates from a coarser resolution precipitation field, with a
goal to reliably represent finer-scale intensities, temporal and
spatial variability, and physical consistency of precipitation re-
gardless of region or season (Maraun et al. 2010). Downscal-
ing techniques can be broadly divided into dynamical and
statistical methods, which can both be divided into a number
of subcategories.

Dynamical downscaling techniques use a high-resolution
regional climate model (RCM) or numerical weather predic-
tion (NWP) model nested within a lower resolution general
circulation model (GCM). The GCM provides the initial and
lateral boundary conditions, while the RCM accounts for
high-resolution topographic data, land–sea contrasts, surface
characteristics, and other components of the Earth system (He
et al. 2016; Xu et al. 2019; American Meteorological Society
2015). Dynamical downscaling techniques, although physi-
cally based, are often computationally expensive, susceptible

to systematic biases from the GCM and RCM, and sensitive
to domain size, location, surface type, and RCM vertical and
horizontal resolutions (He et al. 2016; Xu et al. 2019; Tapiador
et al. 2020). While the grid size of the RCMs is smaller than
that of the parent GCMs, it is often still insufficient for many
hydrologic applications (Tapiador et al. 2020). An overview of
dynamical downscaling, including many examples of dynami-
cal downscaling techniques, can be found in Tapiador et al.
(2020).

Statistical downscaling techniques typically rely on empiri-
cal relationships between large- and small-scale variables, ob-
taining fine-scale fields by relating coarse-scale observations
to smaller-scale environmental data like topography or vege-
tation (Wilby et al. 1999; Chen et al. 2018; He et al. 2016;
Abbasian et al. 2020; Gutmann et al. 2022). Statistical down-
scaling models for precipitation typically produce an ensem-
ble of random precipitation fields that satisfy the large-scale
constraints (i.e., average rainfall over an area) and are consis-
tent with known statistical properties of the fine-scale rainfall
distribution. These precipitation fields are neither physically
based nor should they be considered to be the “actual” small-
scale rainfall field. Rather, they are plausible representations
that provide an estimate of fine-scale variability while main-
taining the appropriate statistical relationships between the
coarse- and fine-scale precipitation (Brussolo et al. 2008;
Rebora et al. 2006a; D’Onofrio et al. 2014; Ferraris et al.
2003; Foufoula-Georgiou et al. 2014). There are many differ-
ent types of statistical downscaling techniques, descriptions,
and examples of which can be found in Wilby et al. (1999),
Kang and Ramı́rez (2010), Ferraris et al. (2003), He et al.
(2016), Chen et al. (2018), and references therein.

Statistical downscaling techniques have the benefit over
dynamical downscaling techniques of being fast and compu-
tationally efficient and are often able to provide estimates
of uncertainty and probability of extremes (He et al. 2016;
Abbasian et al. 2020). Challenges of statistical downscaling
techniques include the ability to maintain consistency of the
downscaled processes with the coarse-scale field, representing
processes not present in the historical data record from which
empirical relationships are derived, and cases lacking a strong
empirical relationship between large- and small-scale processes
(He et al. 2016; Xu et al. 2019).

The Rainfall Autoregressive Model (RainFARM) is a sto-
chastic statistical downscaling model developed specifically to
produce an ensemble of downscaled precipitation features on
the order of 1 km and a few minutes in time from mesoscale
precipitation features on the order of a few tens of kilometers
in space and hours in time. RainFARM has been tested and
shown successful results when applied to both observational
data and model output in several different regions (Rebora
et al. 2006a,b; D’Onofrio et al. 2014; Brussolo et al. 2008,
2009). RainFARM stands out from other statistical downscal-
ing techniques because the downscaled rainfall fields are cal-
culated based solely on information from the coarse-scale
field. Note, RainFARM neither requires nor uses any infor-
mation about the underlying surface or other atmospheric
characteristics.
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In this study, we test RainFARM’s ability to harvest
fine-scale precipitation estimates from IMERG over global
oceans. Since the validity of the input field is critical to ensur-
ing valid downscaling output, we apply the RainFARM down-
scaling technique to coarsened daily rainfall estimates from
IMERG, which are known to be more accurate compared to
observations than those from IMERG at native resolution.
We compare oceanic PAL in situ rain measurements to
IMERG estimates at native resolution, coarsened resolution,
and downscaled from coarsened resolution. Section 2 summa-
rizes the RainFARM stochastic downscaling model. Section 3
describes the IMERG and PAL datasets used in the study, as
well as the domains and time periods selected for evaluation.
Results from the comparisons to the PAL data are presented
in section 4, with discussion and conclusions in section 5.

2. The RainFARM downscaling model

The RainFARM downscaling model produces an ensemble
of possible realizations of the high-resolution rainfall field
from a smooth field at low spatial and/or temporal resolution.
These realizations are not a physically accurate depiction of
high-resolution precipitation, but rather a representation of
precipitation processes with appropriate statistical properties.
Full details of the RainFARM downscaling model can be
found in Rebora et al. (2006a). Here, we provide a brief syn-
opsis of RainFARM, along with several features and caveats
that will influence both our application of RainFARM to
IMERG precipitation estimates and our interpretation of the
evaluation exercises.

RainFARM is based on a nonlinear transformation of a lin-
early correlated stochastic field. A key feature of RainFARM
is the extrapolation of the large-scale power spectrum to
smaller scales. A power-law functional form is assumed for
the extrapolation, with random Fourier phases at unresolved
scales. The large-scale spectral information is propagated to
smaller scales while maintaining the total rainfall volume, lin-
ear correlation structure, and spatial distribution of large-
scale rainfall patterns. Successful application of RainFARM
requires that the coarse-scale field provides sufficient informa-
tion to estimate the slopes of the spatial and temporal power
spectra and that the downscaling be performed only on the
range of scales characterized by the approximate linear scal-
ing behavior (Brussolo et al. 2009; Rebora et al. 2006a,b). In
this way, RainFARM produces estimates of fine-scale precipi-
tation fields without any additional surface or environmental
data.

Beginning with a mesoscale precipitation field P(X, Y, T),
P is defined on scales L0 # (X, Y)# Lmax and T0 # T# Tmax,
where Lmax and Tmax are the size of the domain and length of
record, respectively. The terms L0 and T0 are the scales at
which the field P can be considered a reliable estimate, which
is not necessarily the nominal resolution of the mesoscale rain
field. The goal is to disaggregate P into the stochastic field
r(x, y, t) with resolutions l0 , L0 and t0 , T0, where r is a
member of an ensemble of n possible realizations of the un-
known fine-scale precipitation field (Rebora et al. 2006a).

In calculating the spatial spectral slopes of P, the fields are
assumed to be spatially isotropic (i.e., slopes are the same in
the x and y directions; Rebora et al. 2006a). While the spectral
slopes are calculated directly from the large-scale behavior
of the precipitation field, they are likely conditional, that is,
they depend on the synoptic pattern of the precipitation field
(Rebora et al. 2006b). It is important to calculate the spectral
slopes using not necessarily the native resolution of the field
to be downscaled, but the scale at which the representation of
the field is reliable. Tan et al. (2017), Wu and Wang (2019),
and Bytheway et al. (2023) all found that comparisons
between satellite-based precipitation estimates and in situ
observations agree best at coarser spatiotemporal scales,
particularly daily. For this reason, we coarsen IMERG from
its native resolution to several lower spatial and temporal
resolution fields as described in section 3b to investigate the
sensitivity of the downscaled results to starting resolution and
whether spatial or temporal downscaling is most effective
in providing estimates of the fine-scale variability of oceanic
precipitation.

3. Data

a. IMERG V6 final run

1) DATASET DESCRIPTION

IMERG provides global estimates of rain rate at 30-min in-
tervals at 0.18 (;10 km) grid spacing. Retrieved precipitation
estimates from passive microwave (PMW) satellites in the
global precipitation measurement (GPM) constellation are in-
tercalibrated using the GPM core observatory as a reference
(Huffman et al. 2018). Motion vectors calculated using nu-
merical model output are used to advect precipitating features
during time steps without PMW overpasses (Tan et al. 2019).
Additional microwave-calibrated rainfall estimates from in-
frared radiances following the Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural Networks–
Cloud Classification System (PERSIANN-CCS; Hong et al. 2004)
algorithm are also included. Precipitation estimates over land
are calibrated using the Global Precipitation Climatology Cen-
ter (GPCC) monthly precipitation dataset following Huffman
et al. (2007). No gauge-based bias correction or calibration is
performed over oceans due to scarcity of in situ gauge data
(G. Huffman 2022, personal communication).

IMERG precipitation estimates are available at three levels
of latency to serve different user needs. IMERG-Early and
IMERG-Late are available 6 and 18 h after valid time, respec-
tively, for near-term uses such as hazard forecasting and water
management. IMERG-Final becomes available approximately
4 months after valid time and includes both monthly gauge
adjustments to reduce bias over land and more PMW data
than the Early and Late runs due to data delivery delays (Tan
et al. 2017). In this study, we use the IMERG-Final product.

2) PREPARATION FOR DOWNSCALING

AND EVALUATION

As described, the field to be downscaled using RainFARM
must be at a resolution at which the data are considered to be
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reliable. The low-resolution field must also be of sufficient
size to provide enough information for the extrapolation of
power spectra to smaller scales. Therefore, we perform the
downscaling in domains of 108 3 108 (see Fig. 1) and, prior to
downscaling, average IMERG from its native 0.18 30-min res-
olution to both 0.18 daily and 0.58 daily average rain rates.
This results in domains of 100 3 100 grid boxes at 0.18 grid
spacing and 20 3 20 grid boxes at 0.58 grid spacing. Spatial
and temporal power spectra and their associated slopes are
calculated monthly to account for seasonal changes in the pre-
cipitation characteristics in each domain.

Five downscaling experiments are performed, each produc-
ing monthly ensembles of 100 high-resolution precipitation
fields. From both the 0.58 and 0.18 daily rain rates, we tempo-
rally downscale to both 3- and 1-hourly rain rates. Addition-
ally, the 0.58 fields are spatially downscaled to 0.18 daily
precipitation. Observations from the in situ PALs are used
to evaluate both the downscaled fields and IMERG fields

coarsened to the same resolutions as produced by the down-
scaling. In this way, we determine whether an ensemble of
downscaled realizations can represent the variability of fine-
scale precipitation, and whether information from the spatial
and temporal power spectra of the coarse-scale field can
produce a downscaled precipitation field with similar or im-
proved comparisons to PAL observations as IMERG coars-
ened to the same resolution.

A variety of evaluation metrics are used to evaluate the
coarsened and downscaled precipitation fields, including bias,
correlation coefficient, critical success index (CSI), false alarm
ratio (FAR), frequency bias, mean absolute error, mean er-
ror, probability of detection (POD), and root-mean-square er-
ror (RMSE). Contingency table statistics (POD, FAR, and
CSI) are calculated using scale-dependent thresholds deter-
mined using Eq. (1) from Tan et al. (2017). Evaluation statis-
tics are calculated monthly for each month when multiple
PALs are available in a given domain and only for IMERG

FIG. 1. Trajectories of PALs deployed between 2011 and 2018 in (a) the eastern Pacific and
Atlantic Oceans and (b) western Pacific and Indian Oceans. Different color trajectories are used
for visibility. The 108 3 108 domains where downscaling is performed are also shown and are de-
scribed in Table 1.

J OURNAL OF HYDROMETEOROLOGY VOLUME 242354

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/23/24 09:28 PM UTC



grid boxes collocated with PALs based on the average PAL
location during the averaging period (i.e., 1, 3, 24 h). Because
RainFARM is designed to maintain the overall statistical rep-
resentation and total water of the large-scale precipitation
field, statistical descriptors (e.g., mean rain rate) and associated
performance statistics (bias) of the downscaled precipitation
fields will not change significantly from that of the large-scale
field. However, because the downscaling will inherently change
the spatial and temporal distributions of the precipitation,
metrics such as POD, FAR, RMSE, and correlation coeffi-
cient may differ between the large-scale and downscaled fields.
We also aggregate the statistics for all Januarys, all Februarys,
etc., in domains having more than one full year of PAL obser-
vations in order to evaluate the performance of RainFARM
over the seasonal cycle, as well as aggregating the statistics
based on phase of the El Niño–Southern Oscillation (ENSO)
index, monthly mean rain rate, and binned spatial and tempo-
ral spectral slopes.

b. PAL

PALs have been deployed on drifting Argo floats and sta-
tionary moorings across the global oceans, frequently as part
of field projects (Bingham et al. 2019; Lindstrom et al. 2017,
2019; Riser et al. 2019; Yang et al. 2023). The PAL records a
time series of ambient noise and converts it to an acoustic
spectrum, from which dominant noise sources such as rain,
wind, biological (e.g., marine mammals), and anthropogenic
sources (e.g., shipping, oil drilling) can be identified. Data
points classified as either rain or wind are then used to esti-
mate either rain rate or wind speed. That is, wind and rain re-
trievals are exclusive to eliminate the chance of rain noise
contaminating wind speed estimates. Rain-rate and wind speed
estimates from PALs mounted below the surface on stationary
moorings compare favorably with collocated surface rain
measurements on minute time scales (Ma and Nystuen 2005;
Nystuen 2001; Yang et al. 2015; Riser et al. 2019).

PALs on drifting Argo floats are deployed at 1-km depth, col-
lecting rain and wind samples every 2–9 min. Every ;9.5 days,
the float rises to the surface to collect an ocean vertical profile
during ascent and telemeter the collected data via the Iridium
satellite network. PALs have also been deployed on a number
of research moorings, typically at the same 1000-m depth as the
Argo floats. When deployed at 1-km depth, the circular surface

listening area being sampled by the PAL has a diameter of
5 km (i.e., ;5 times the depth where the instrument is located).
This 5-km areal precipitation estimate is well suited for com-
parison with gridded precipitation estimates from satellites
(Bytheway et al. 2023; Yang et al. 2015), although the PAL’s
areal footprint is still smaller than the grid spacing of IMERG,
at both native and coarsened spatial resolutions. This spatial-
scale mismatch may impact the results, particularly for IMERG
coarsened to 0.58.

Individual PALs typically remain deployed for 1–4 years,
and therefore, the number of PALs available at any given time
varies. Recently, 12 years of PAL data were made available in
NetCDF format with uniform 1-min time steps (Thompson et al.
2023). Figure 1 illustrates the locations of PALs over the period
2011–18, along with 11 selected 108 3 108 domains having
periods of record with multiple PAL observations. Descriptions
of each domain, including domain names, temporal extent,
and the number of PALs available for comparison, are given
in Table 1.

4. Results

The quasi-global nature of the selected domains, differing
temporal availability of PALs, and differing seasonal and dy-
namical characteristics of precipitation in the domains result
in a variety of outcomes when RainFARM is applied to
IMERG in each domain and time period. As such, we will focus
on generalized outcomes from the application of RainFARM
to IMERG, providing examples from individual domains to
illustrate the results.

First, we show that RainFARM is performing as expected}
that is, that the downscaled fields maintain the statistical
characteristics of the large-scale precipitation field. Figure 2
compares the downscaled precipitation ensemble to IMERG
at both native and coarsened resolutions and the PAL mounted
on the SPURS-2 Central Mooring (10.058N, 125.038W) for
November 2016. The left column of Fig. 2 shows results
for 0.58 daily rain rates spatially downscaled to 0.18 daily
rain rates, while the right column shows temporally down-
scaled realizations from daily to hourly rain rates at 0.18 grid
spacing.

When downscaling spatially, RainFARM provides a more
variable ensemble of precipitation estimates compared to the

TABLE 1. Characteristics of the 11 domains evaluated in this study.

Domain name Description No. of PALs Temporal coverage Spatial coordinates

SPURS-2 NASA SPURS-2 field campaign 4 drifter, 2 mooring Nov 2016–Jul 2018 1208–1308W, 58–158N
SPURS-1 NASA SPURS field campaign 15 drifter Nov 2012–Jun 2016 308–408W, 208–308N
PERU West of coastal Peru 5 drifter Jan–Mar 2017 958–1058W, 98–198S
EPAC Eastern Pacific 4 drifter Jun 2011–14 1368–1468W, 08–108N
CTLAM West coast of Central America 4 drifter Dec 2013–Jan 2017 878–978W, 28–128N
PACISL Pacific Islands 3 drifter Jul 2012–Mar 2015 1678–1778E, 78–178N
PHILL Philippines 2 drifter Feb 2012–Jul 2013 1268–1368E, 48–148N
EINDIA Bay of Bengal 2 drifter Sep 2011–Feb 2015 808–908E, 68–168N
NWUS1 West Coast of United States}Washington/Oregon 2 drifter Dec 2011–Mar2015 1278–1378W, 378–478N
NWUS2 West Coast of United States/Canada 3 drifter Dec 2011–Mar 2015 1288–1388W, 428–528N
ECUS East Coast of United States 2 drifter Nov 2012–Jan 2015 628–728W, 318–418N
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temporally downscaled realizations (Figs. 2a,b). At the end of
November 2016, accumulated precipitation estimates from
the spatially downscaled ensemble range from 300 mm to
more than 800 mm, while the ensembles of realizations from

the temporally downscaled experiments are all near 500 mm.
In either case, the mean of the downscaled realizations
(dashed cyan lines) remains very close to the accumulated
precipitation estimate from the coarsened field that was

FIG. 2. (left) Spatially and (right) temporally downscaled IMERG ensembles (gray) compared to the SPURS-2
Central Mooring PAL (red), IMERG coarsened prior to downscaling (black), and IMERG coarsened to the same
resolution as the downscaled fields (blue) for November 2016 in the SPURS-2 domain. Dashed cyan lines represent
the mean of the downscaled ensembles. (a),(b) Accumulated monthly precipitation. (c),(d) Average rain rate at each
time step. (e),(f) CDFs of rain rate.
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downscaled (black lines), although the average of the tem-
porally downscaled realizations more closely matches the
IMERG coarsened to the same resolution (0.18 1 h, blue line
in Fig. 2b). Because the downscaling algorithm distributes the
daily rainfall from the 0.18 daily field over the 24 h in the day
according to the extrapolated spectral slope of the daily pre-
cipitation field, agreement between the ensemble mean rain
and the IMERG 0.18 hourly rain field indicates that the ex-
trapolated spectral information is representing the fine-scale
temporal variability of the rain well.

Accumulated precipitation from IMERG at 0.58 daily is
lower than the accumulated daily precipitation from the PAL
until 25 November, when IMERG captured an intense pre-
cipitation event with a daily rainfall of ;150 mm (Fig. 2a).
IMERG coarsened to 0.18 daily estimates higher daily pre-
cipitation than the PAL early in the month, appears to
miss several events midmonth, and returns to overestimates
in the wake of the intense precipitation event on the 25th.
This event was not captured by the PAL, although the PAL
does indicate an intense precipitation event the next day. This
highlights the difficulty of comparing gridded satellite precipi-
tation estimates to in situ measurements in highly heteroge-
neous precipitating fields, even when both observations have
relatively similar spatial resolutions (approximately 10-km
IMERG versus 5-km PAL). However, when IMERG is coars-
ened to a resolution at which the precipitation estimates can
be considered somewhat reliable prior to downscaling, the
spatially downscaled ensemble produced by RainFARM en-
velopes the in situ measurement. The reduced variability in
the temporally downscaled realizations does not provide simi-
lar enveloping of the estimates, instead maintaining more con-
sistency with the starting field (Fig. 2b).

Figures 2c and 2d show average rain rates from PAL and
both coarsened and downscaled IMERG at each time step.
Similar to the prior example, for both the spatially and tempo-
rally downscaled fields, the average of the downscaled realiza-
tions again closely matches the value of the coarsened fields
that were downscaled. The mean of the spatially downscaled
realizations also compares well with IMERG averaged to
0.18 daily (Fig. 2c); however, the temporally downscaled
ensemble mean does not compare as well with IMERG
0.18 hourly rain rates (Fig. 2d). Figure 2d also shows timing
mismatches between PAL and IMERG at hourly temporal
scale, with IMERG frequently missing precipitation that is
observed by the PAL, or indicating precipitation when the
PAL does not, again highlighting the challenges of comparing
satellite and surface-based measurements in regions of highly
variable precipitation, since the location of the PAL within the
IMERG grid box can influence the evaluation statistics. While
Fig. 2c also shows that the spatially downscaled realizations
mostly envelope the PAL estimates, there are also several time
periods when they do not. The temporally downscaled ensem-
ble (Fig. 2d) shows more overlap with PAL at individual hours
than the accumulated rainfall time series in Fig. 2b.

A final demonstration of RainFARM preserving the statis-
tics of the large-scale rainfall is shown in the cumulative prob-
ability distribution functions (CDFs) of rain rates from PAL,
IMERG, and RainFARM (Figs. 2e,f). The small number of

daily data points used to create the CDFs from individual en-
semble members (30) results in the jumpy, stepwise appear-
ance of the CDFs in Fig. 2e. For both spatial and temporal
downscaling, the mean of the downscaled realizations com-
pares closely to the CDF of rain rates from the coarsened
IMERG fields at the same resolutions. The spatially down-
scaled realizations also broaden the CDF to include more
frequent higher rain rates than the coarsened IMERG. Thus,
the application of RainFARM may provide precipitating
ensemble members that capture extremes not found in the
coarsened data.

While the ensemble of downscaled realizations successfully
captures the statistical properties of the precipitating field and
some ensemble members might somewhat resemble the ob-
servations, the individual ensemble members are not expected
to provide physically realistic representations of the precipi-
tating field. Figure 3a shows IMERG daily rainfall at 0.58 grid
spacing for 16 May 2014 off the coast of Central America
(CTLAM). Figures 3b and 3c show two individual realizations
of the spatially downscaled precipitation field at 0.18 daily res-
olution. The individual 0.58 grid boxes are still evident in the
high-resolution fields, with the rainfall from each 0.58 grid box
somewhat randomly distributed into the 0.18 grid boxes in a
disorganized and often unphysical manner. Where one would
generally expect to see gradients from heavy to light precipi-
tation, the downscaled realizations have more randomly dis-
tributed grid boxes with heavy average rain rates sometimes
adjacent to grid boxes with no precipitation. Additionally,
RainFARM does not change the size of the input precipitat-
ing area. The algorithm cannot produce precipitation where
the coarse-scale field does not indicate the presence of precip-
itation, nor will it produce zeros in grid cells where the
coarse-scale field indicates nonzero precipitation, although a
threshold can be assigned such that any downscaled grid box
with rain rate below that threshold is set to 0.

Figures 3d and 3e show a single ensemble member from the
field in Fig. 3a temporally downscaled to 0.58 hourly resolu-
tion at consecutive time steps (1000 and 1100 UTC, respec-
tively). Spatially, these fields are more physically realistic than
the 0.18 fields shown in Figs. 3b and 3c. They also show plausi-
ble representations of the temporal evolution of the precipi-
tating field from one hour to the next, with some areas
intensifying and others weakening. While individual hourly
rain maps, and even a few consecutive hours, may appear
physically consistent with observed spatial distributions of
precipitation, a loop of these hourly downscaled fields over a
longer period of time reveals less realistic behavior, showing
stationary precipitating fields with grid boxes that appear to
randomly increase or decrease in intensity.

Before presenting conclusions based on evaluation metrics,
we first describe the organization of Figs. 4 and 5. Results
shown are for downscaled ensembles starting from IMERG
daily fields at 0.58 spatial resolution, with evaluation metrics
for spatially downscaled realizations shown in the left column
(top row in Fig. 5) and for temporally downscaled realizations
in the right column (bottom row of Fig. 5). Each panel is di-
vided into five columns representing a different evaluation
metric: correlation coefficient (Corr), POD, FAR, CSI, and
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FIG. 3. (a) The 16 May 2014 IMERG daily average rain rate at 0.58 grid spacing in the
CTLAM domain. (b),(c) Spatially downscaled realizations of the field shown in (a) at 0.18 grid
spacing. (d) Temporally downscaled realizations from ensemble member 25 for 1000 UTC at
0.58 hourly resolution. (e) As in (d), but for 1100 UTC.
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FIG. 4. Evaluation statistics for IMERG at 0.58 daily downscaled (left) spatially and (right) temporally for (a),(b)
December 2012 in EINDIA; (c),(d) April 2015 in SPURS-1; and (e),(f) September 2019 in NWUS1. Data points in
the leftmost portion of each column represent IMERG at native (black cross), 0.58 daily (gray square), 0.18 daily
(green cross), 0.58 3 h (blue cross), and 0.581 h (red cross). Boxplots show median, IQR, and 1.5 times IQR of values
calculated for 100-member RainFARM-produced ensembles.
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RMSE. In each column, a series of individual data points
(crosses or square) in the leftmost portion represents metrics
calculated for coarsened IMERG fields. All panels have a
gray square representing the IMERG at 0.58 daily (i.e., the field
being downscaled) and a black cross representing IMERG at
native (0.18 0.5 h) resolution. The remaining crosses represent
IMERG coarsened to the resolutions produced by RainFARM:
0.18 daily (green) and 0.58 at 3-h (blue) and 1-h (red) time steps.
Spatial downscaling is only performed on the 0.58 daily fields.
Results from temporally downscaling 0.18 daily IMERG fields
are not shown for brevity and clarity of the figures and unless
otherwise noted were similar to the results shown for 0.58 fields.
Boxplots show the distribution of the evaluation statistics calcu-
lated for the 100-member high-resolution ensemble produced by
RainFARM, with the median denoted by the horizontal line
within the box, the box itself indicating the interquartile range
(IQR), and whiskers indicating 1.5 times the IQR. Boxplots
are color matched to the crosses representing the coarsened
IMERG fields (i.e., green for 0.18 daily, blue for 3 hourly, and
red for hourly), and this color scheme will be used to repre-
sent the same resolution fields throughout the remainder of
the manuscript.

The RainFARM downscaling algorithm produces an en-
semble of precipitation scenarios that aim to characterize the
expected variability of the fine-scale field, as informed by the

coarse field. We compare evaluation metrics for the coarsened
IMERG field, the downscaled ensembles, and IMERG coars-
ened to the same resolution as the downscaled ensembles. If
the coarsened IMERG is inconsistent with the in situ observa-
tions, the power spectra are not expected to provide the nec-
essary information to estimate higher resolution rainfall. In
this case, a simple coarsening of IMERG from native resolu-
tion to an intermediate resolution should provide a better
comparison to PAL than the downscaled IMERG results.
Conversely, if the coarsened IMERG field compares favor-
ably to PAL, the spatial and temporal power spectramay pro-
vide additional guidance on the expected fine-scale rainfall
variability, such that coarsening then downscaling provides an
ensemble that compares more favorably to PAL than coars-
ening alone. It is also possible for coarsened IMERG to com-
pare favorably to PAL, but for the spatial and/or temporal
power spectra to not follow linear scaling behavior, which
would also potentially lead to worse comparisons to PAL by
the downscaled ensemble.

Because precipitation characteristics vary in space and
time, RainFARM produced a variety of results. In some
cases, the entire distribution of evaluation statistics for the
downscaled ensemble is shifted toward better or worse com-
parison to PALs than IMERG coarsened to the same resolu-
tion, and in many cases, the downscaled ensembles compare

FIG. 5. (top) As in the left panels of Fig. 4 and (bottom) as in the right panels of Fig. 4, but for the PERU domain in (a),(d) February 2014;
(b),(e) February 2016; and (c),(f) February 2017.
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more favorably to PAL in some metrics and less favorably in
others. Several examples of the downscaled realizations pro-
viding improved, degraded, or relatively unchanged compari-
sons to PALs than those of the coarsened IMERG fields are
shown in Fig. 4 for December 2012 in the Bay of Bengal
(EINDIA, Figs. 4a,b), April 2015 in the SPURS-1 field cam-
paign region (Figs. 4c,d), and September 2019 over U.S. West
Coast near Washington and Oregon (Figs. 4e,f).

For the spatially downscaled realizations in the East India
domain (Fig. 4a), the median of the ensemble evaluation sta-
tistics is nearly equal to the values calculated for IMERG
coarsened to 0.58 daily (i.e., the field that was downscaled).
For POD, FAR, and CSI, the IQR of the ensemble evaluation
statistics is shifted toward better values than IMERG coars-
ened to the same resolution. The median ensemble correla-
tion coefficient (;0.2) is nearly equal to that obtained when
comparing PAL to IMERG coarsened to 0.18 daily, while the
ensemble RMSE distribution is shifted toward higher values
than IMERG at the same resolution. This suggests that coars-
ening then downscaling provides a more reliable estimate of
the fine-scale spatial variability, although the fine-scale inten-
sity representation may be less reliable (i.e., contingency table
statistics improve, but metrics based on intensity are the same or
worsen). The temporally downscaled realizations in EINDIA
(Fig. 4b) behave differently, with slightly increased correlation
coefficients compared to IMERG coarsened to the same resolu-
tion and RMSE distributions that are entirely lower than the
coarsened fields. For POD, FAR, and CSI, the entire distribu-
tion of the 0.58 1-h ensemble is shifted toward improved com-
parison to PALs than the IMERG coarsened to the same
resolution. Downscaling to 0.58 3 h provides very slightly im-
proved POD, while FAR and CSI are both negatively im-
pacted by the downscaling (Fig. 4b).

In the SPURS-1 domain, the spread of values from the
downscaled ensembles is smaller than that calculated in
EINDIA. For most metrics, and both spatial and temporal
downscaling, the median value of the ensemble of down-
scaled fields is the same as that calculated for IMERG coars-
ened to the same resolution (Figs. 4c,d). This is especially
true for spatially downscaled fields. For temporally down-
scaled fields, ensembles show almost no change from the
coarsened IMERG values for POD and CSI, and very small
changes in correlation, RMSE and FAR. In this domain, coars-
ening then downscaling provides little benefit over simply
coarsening IMERG to slightly lower resolution.

Turning to an extratropical domain, compared to coarsened
IMERG, the spatial downscaling in NWUS1 produces very
little change in CSI and RMSE (Fig. 4e), a very slight im-
provement in POD, and overall lower correlation coefficient
and higher FAR. Where the reliability of the spatially down-
scaled ensemble is mostly reduced or unchanged compared to
coarsened IMERG, temporal downscaling in this domain re-
sults in slight improvements for all five of the calculated met-
rics (Fig. 4f). This suggests that the spatial spectral slopes do
not provide much information about the fine-scale variability,
while the temporal power spectrum can inform a precipitation
time series that is more consistent at PAL sites than IMERG
coarsened to the same resolution.

Figure 4 highlights the inconsistency of RainFARM’s abil-
ity to represent fine-scale variability between domains, and
sometimes, inconsistency between spatial and temporal down-
scaling results in the same domain. For a given location and
season, one might expect similar precipitation characteristics
year to year, and therefore similar capacity for RainFARM to
produce reliable estimates of fine-scale variability, with excep-
tions for areas strongly impacted by decadal oscillations such
as ENSO. Figure 5 shows results from the month of February
over 3 years (2014, 2016, 2017) in the PERU domain. Results
are not shown for February 2015 because rain rates in the
downscaled fields at most resolutions did not reach the thresh-
olds necessary for calculation of contingency table statistics.
A summary of the benefit of downscaling for each metric in
each year is shown in Fig. 6, with green boxes indicating im-
proved representation of fine-scale variability over coarsened
IMERG, red indicating that the downscaling produced wors-
ened comparisons to PAL observations (i.e., the distribution

FIG. 6. Change in evaluation metrics from downscaled ensembles
compared to IMERG coarsened to the same resolution for spa-
tially and temporally downscaled fields in the PERU domain for
February 2014, 2016, and 2017. Green indicates better perfor-
mance, while red indicates degraded performance and yellow indi-
cates little to no change.
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of ensemble evaluation metrics is shifted toward better or
worse values, respectively, than IMERG at the same resolu-
tion), and yellow indicating relatively little change in perfor-
mance (i.e., the ensemble median is approximately equal to
coarsened IMERG with ensemble spread not skewed toward
either better or worse values). In 2014, spatial downscaling
resulted in overall improved validation statistics, but temporal
downscaling produced no change or worsened comparisons with
the PALs. In 2016, temporal downscaling resulted in improved
statistics, while spatial downscaling results were mixed}the
correlation coefficient and RMSE were improved, but contin-
gency table statistics were worse. In 2017, spatially downscaled
ensembles overall compared less favorably to PAL than did
IMERG coarsened to the same resolution, while temporally
downscaled ensembles did not make much difference, except
for contingency table statistics at 3 h.

We have shown that, when comparing IMERG to PAL,
downscaling does not consistently improve the representation
of the high-resolution precipitation from domain to domain,
or for the same season in a single domain. To further illustrate
the inconsistency of downscaling results, we now discuss
RainFARM’s performance in two domains that should exhibit
similar precipitation. Both the ECUS and NWUS2 domains
are located along the extratropical storm tracks. One might ex-
pect that while precipitation patterns are not identical, they
might exhibit similar spatial and temporal spectral rain char-
acteristics since much of the precipitation is the result of
strong dynamical forcing by extratropical cyclones. Figures 7–9
summarize the overall changes in monthly evaluation statistics
that result from applying RainFARM downscaling to coarsened
IMERG versus coarsening IMERG only, employing the

same “stoplight” color scheme used in Fig. 6 for spatial,
temporal to 3 h, and temporal to 1 h downscaling, respec-
tively. Full time series of the change in the distributions of the
evaluation statistics are available in the online supplemental
material.

In Fig. 7, there are clear differences in the spatially down-
scaled results between the two domains, particularly in corre-
lation and RMSE. Whereas spatially downscaled fields in the
ECUS domain most often compare less favorably to PAL
than coarsened IMERG, in the NWUS2 domain spatial
downscaling most often results in little to no change in these
two metrics. For the contingency table statistics, there are of-
ten months where downscaling has the same impact on evalu-
ation metrics in both domains, but there does not appear to
be a pattern (e.g., seasonal cycle) as to when there is agree-
ment and when there is not.

The variable impact of downscaling between the two do-
mains is more obvious for temporally downscaled ensembles
shown in Figs. 8 and 9 for 3- and 1-h time scales, respectively.
While both domains exhibit mostly improved POD when tem-
porally downscaled, the remaining comparison metrics in the
ECUS domain worsened in most months for the remaining
statistics, while the downscaled validation statistics in the
NWUS2 domain frequently exhibit improvement over valida-
tion statistics from IMERG coarsened to the same resolution.

5. Discussion and conclusions

In this paper, we described the application of the RainFARM
statistical downscaling technique to rain-rate estimates from
IMERG. IMERG fields were coarsened to lower spatial and
temporal resolution prior to downscaling, and downscaling

FIG. 7. As in Fig. 6, but for spatial downscaling in the ECUS and NWUS2 domains for each month that both domains had PAL deployments.
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was applied in both space and time. The ensembles of down-
scaled precipitation fields were compared to in situ precipita-
tion observations from PALs in 11 domains over the global
oceans. IMERG was also coarsened to the same resolutions

that were produced by the downscaling to determine whether
the process of coarsening then downscaling produces esti-
mates of fine-scale rainfall variability that compare more fa-
vorably to the PALs than coarsening IMERG alone. The

FIG. 8. As in Fig. 7, but for temporal downscaling to 0.58 3 h.

FIG. 9. As in Fig. 7, but for temporal downscaling to 0.58 1 h.
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RainFARM algorithm was chosen for its publicly available
source code and demonstrated prior ability to produce ensem-
bles of precipitation fields that are statistically consistent with
the large- and small-scale observed precipitation fields.

Evaluations of the downscaled precipitation ensembles
showed inconsistent results in all domains, with some months
showing more consistency with the in situ data and others
showing worsened or unchanged comparisons to PAL than
IMERG coarsened to the same resolution. Comparisons to
IMERG at coarsened resolution are a significant benchmark
since IMERG tends to show better performance relative to in
situ observations at increased spatial and temporal scales
(e.g., daily, degree-wide). In some cases, spatial downscaling
provided improved estimates of precipitation over coarsened
IMERG, while in other cases, temporal downscaling pro-
duced more favorable results. In others still, both spatial and
temporal downscaling produced either improved or worsened
evaluation metrics than coarsened IMERG. The ability of the
RainFARM algorithm to produce improved estimates of fine-
scale precipitation compared to coarsened IMERG depends
both on the reliability of the coarse-scale (0.58 daily) precipi-
tation estimate, and on the spatial and temporal power spec-
tra exhibiting a scaling behavior such that information from
large scales can be extrapolated to fine scales. These results
suggest that there are conditions under which the spatial and
temporal power spectra from coarsened IMERG provide suf-
ficient information to better estimate fine-scale variability via
downscaling, and there does not appear to be a systematic in-
dication that precipitation regime influences whether spatial
or temporal downscaling will work better, or at all. Because
the coarse-scale precipitation field needs to contain enough
data for the RainFARM algorithm to adequately calculate
the spectral slopes, we chose to perform the downscaling on
each individual month. It is possible that downscaling on indi-
vidual precipitating events could impact the outcome of the
downscaling, but this is both beyond the scope of this work
and would require a denser validation dataset. Additionally,
the use of a constant or different scale-dependent threshold
for computing contingency table statistics may produce differ-
ent results. Sensitivity analysis to the threshold used for evalu-
ation was not performed as part of this study.

Spatially downscaled realizations provide a more varied en-
semble, but the spatial distribution of the precipitation field is
very unrealistic. Single maps of temporally downscaled real-
izations look more physically realistic but produce ensembles
with smaller variability, and ensemble members also have
no memory of the spatial distribution of precipitation from
previous time steps, resulting in an unrealistic time series of
precipitation fields when viewed as a loop. For most of the
simulations, the spread of the evaluation metrics calculated
with the downscaled ensemble envelopes the value of the
same metric calculated for IMERG coarsened to the same
resolution. In those cases, coarsening then downscaling pro-
vides an estimate of the uncertainty of the coarsened IMERG
field, which could be a benefit in some applications, but does
not necessarily provide a better or worse estimate of the pre-
cipitation at a given point.

D’Onofrio et al. (2014) applied RainFARM to RCM out-
put and showed that, when compared to a dense gauge net-
work, the downscaled ensemble fields compared more
favorably to the gauge data than the coarse resolution model
output. In this work, we find that RainFARM cannot reliably
produce such improvements over the ocean, likely due to two
characteristics of the previous work that we were unable to
recreate in this study.

First, the validity of the field being downscaled is very im-
portant, as a more reliable coarse field will produce a more re-
liable downscaled ensemble. Previous studies have started
with coarsened radar data or physically based atmospheric
model output that already have relatively reliable representa-
tions of precipitation. In this study, the starting data, IMERG,
is known to be unreliable at its native resolution, so it was
coarsened to lower resolutions that are known to be more re-
liable (Tan et al. 2017; Bytheway et al. 2023). However, the
quality of these estimates still leaves much to be desired. In
fact, Guilloteau et al. (2021) found that while IMERG tempo-
ral power spectra compared well to a radar-based multisensor
reference over the southeastern United States at scales down
to 4 h, spatial power spectra comparisons became poor at
scales finer than 250 km. Thus, even going up to 0.58 may not
be sufficient to obtain a reliable enough estimate of precipita-
tion from IMERG for RainFARM to be successful. This
points to the need for continued work on satellite precipita-
tion algorithms to improve the accuracy of these products at
their native resolution.

Second, the D’Onofrio et al. (2014) study had a dense sen-
sor network for comparison, whereas most of the domains
considered in this study contained fewer than five PALs for
comparison. The ability to gain improvements in the evalua-
tion metrics is strongly dependent on how RainFARM dis-
tributes rainfall from a coarse scale into multiple higher
resolution parcels (either grid box or time steps) given the ex-
trapolated spectral information. For example, for spatial
downscaling, we began with a relatively large 0.58 square grid
box, which was distributed into 25 grid boxes of 0.18. As
shown in Fig. 3, the spatial distribution of precipitation in
these smaller grid boxes is physically unrealistic, and the per-
formance of a given ensemble member depends on the rain
rate assigned to the 0.18 box containing the PAL. While this
same issue also applies to previous studies, the use of a denser
sensor network can provide more points for comparison and a
clearer picture of how downscaling changes the performance
of the precipitation estimate ensemble. It is anticipated that
with a denser in situ sensor network, we would find more con-
sistent or more explainable results in each domain or between
domains.

In addition to the results shown herein, downscaled realiza-
tions were also compared to PAL based on seasons (wet ver-
sus dry or warm versus cold), ENSO phase, and based on
precipitation characteristics (monthly mean rain rate and spa-
tial and temporal spectral slopes). In several domains, there
was a clear relationship between factors impacting storm
characteristics and performance of the downscaled realiza-
tions (e.g., improvement over coarsened IMERG in wet sea-
son but not dry, or for a given ENSO phase). However, like
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the results already discussed, the conditions for realizing the
benefits of downscaling were not consistently present between
domains, and an overall description of storm characteristics
that produce reliable downscaled realizations from IMERG
using RainFARM remains to be found.

The need for high-resolution, accurate estimates of precipi-
tation over ocean remains crucial to our understanding and
monitoring of oceanic processes and ocean–atmosphere cou-
pling. Air–sea fluxes, ocean freshening, ocean turbulence, and
ocean cooling are all impacted by the instantaneous rain rate
and operate on scales much faster and smaller than daily, 18
satellite estimates of rain that have proven accuracy. Cur-
rently, precipitation estimates based on retrievals from satel-
lite observations are the best way to continuously monitor
global precipitation over oceans, but these estimates are in
need of continued improvement and refinement. While the al-
gorithms that produce these products are almost always un-
dergoing development and improvement, each update is a
resource-intensive undertaking that can take several years to
complete. In the meantime, it remains worthwhile to pursue
computationally inexpensive postprocessing techniques such
as more advanced downscaling or machine learning techni-
ques to try to improve precipitation estimates over the oceans,
while recognizing that these techniques may be fundamentally
limited by the representativeness of the input coarse-scale
field.
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